Mi-STAR: Michigan Science Teaching and Assessment Reform

Workshop Presenters:Emily GochisLuke BowmanStephanie TubmanDoug OppligerRobert HandlerSteve Mattox

All Lesson Plans and Handouts can be found on the Mi-STAR Website at: http://mi-star.mtu.edu/GIFT2015

THE HERBERT H. AND GRACE A. DOW FOUNDATION

Mi-STAR is...

A partnership to reform STEM education


<u>TEID Teeb</u>

Midland Public Schools Inspiring Excellence

WESTERN MICHIGAN UNIVERSITY

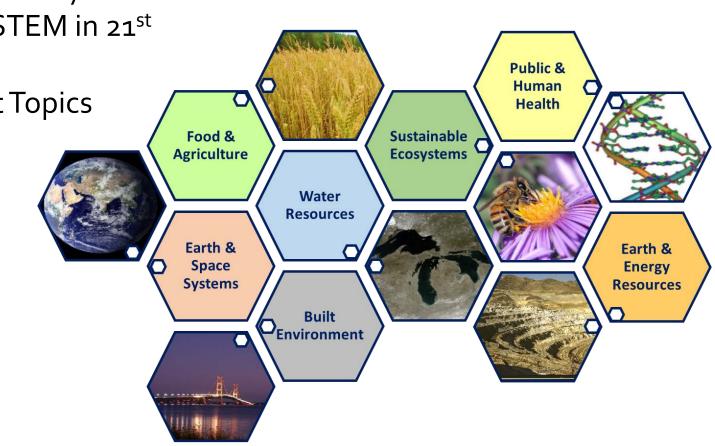
Mi-STAR is...

Motivated by a vision for the future in which science is taught and learned as an integrated body of knowledge that can be applied to address real-world problems and phenomena.

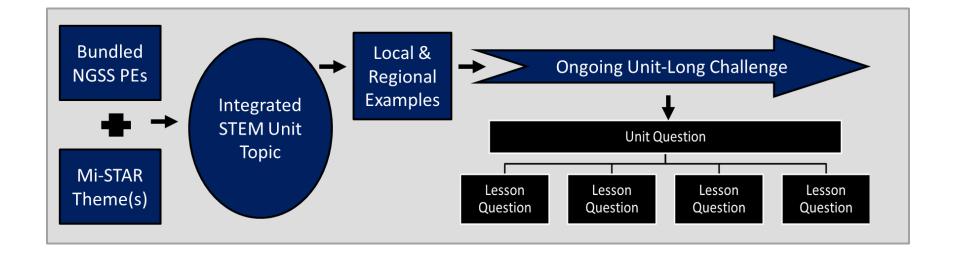
A FRAMEWORK FOR K-12 SCIENCE EDUCATION Practices, Crosscutting Concepts, and Core Ideas

NATIONAL RESEARCH COUNCI

Mi-STAR is...

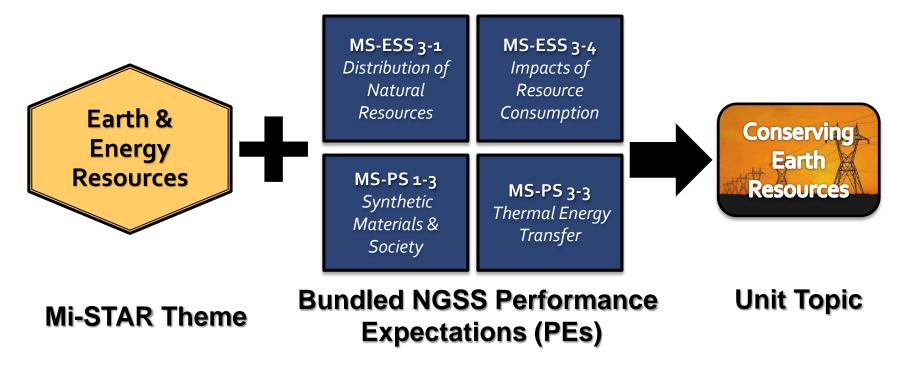

Developing new:

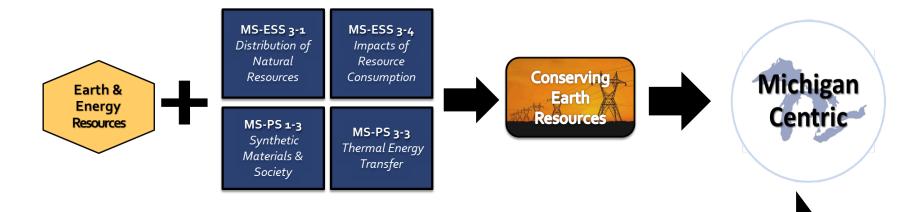
- Middle school curriculum and assessments
- Teacher education programs
- Teacher professional development opportunities



Mi-STAR Themes

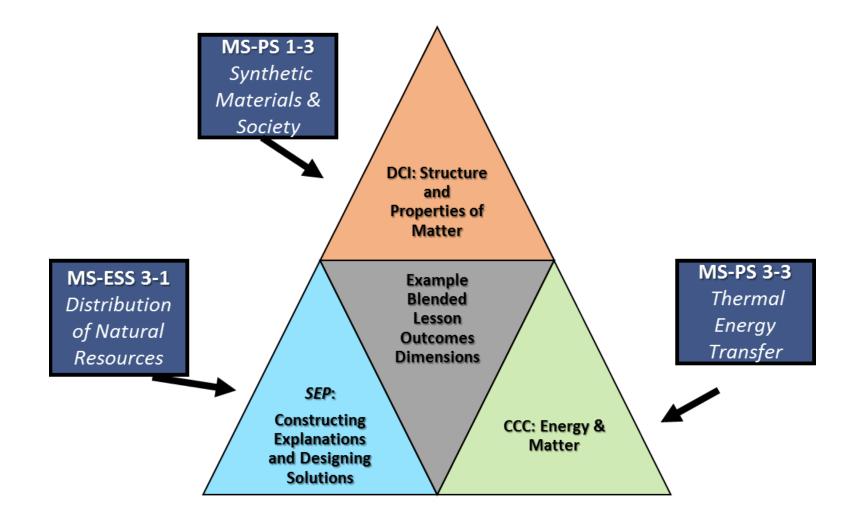
- Interdisciplinary
- Apply to STEM in 21st
 Century
- Drive Unit Topics




Designing a Mi-STAR Unit

Designing an Integrated Curriculum

Building Materials: How We Use Natural Resources



On-Going Unit Challenge

Select the 'best' wall insulation material for a new building in your community.

Lesson Outcomes are Blended & 3D

How do we determine which is the `best' wall insulation?	How are the insulation's properties unique & useful?	What is insulation made from? How will it be disposed of later?	What effect does the insulation's "Life Cycle" have on Earth Systems?						
Select the 'best' wall insulation material for a new building in your community.									
Lesson 1: Engage in Challenge Homes from around the world	Lesson 3: Properties of Matter	Lesson 5: Synthesizing a Synthetic Material	Lesson 8 & 9: Material Life Cycle, Impact of Life Cycle on Earth System						
Lesson 2: Decision Matrix Criteria & Constraints	Lesson 4: Thermal Energy Transfer	Lesson 6 & 7: Population Growth, Distribution of Natural Resources	Lesson 10: The Final Design						

Homes Around the World

Japan

Newfoundland, Canada

USA

Northeast, USA

Challenge: Which is the 'best' wall insulation material for a new building in your community?

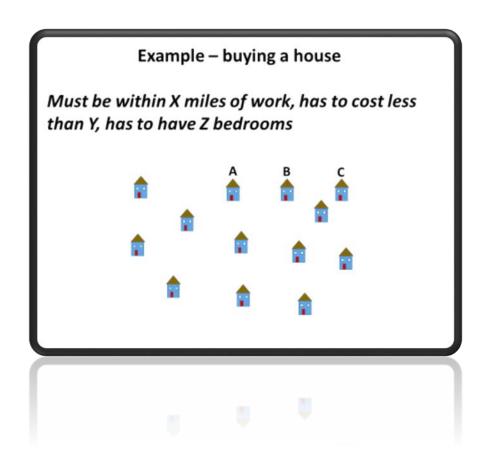
Cellulose Insulation

Source: http://archrecord.construction.com/products/productreports/2 010/thermal/5_Quiet_Batt_Acoustic_Insulation.jpg

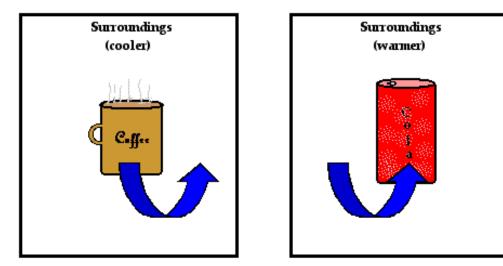
Foam Board Insulation

source: http://hci.frontstepsmedial.netdna-cdn.com/wpcontent/uploads/2009/06/extruded-polystyrene-insulation.jpg

Rock Wool Batt Insulation


Source: http://i.ytimg.com/vi/pkwJwpEqMYo/maxresdefault.jpg

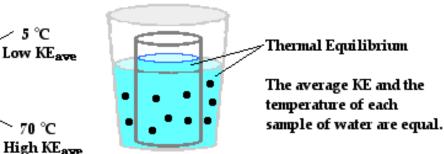
Fiberglass Batt Insulation


source: http://www.planningtiny.com/wpcontent/uploads/2015/03/fiberglass-batt-insulation.jpg

Decision Matrix

- Specify the elements of the decision process
- ID important assumptions, variables involved
- Quantify where possible
- Make the decision process systematic, transparent, and understandable...
- ID important constraints, criteria, assign criteria values, interpret, and reflect

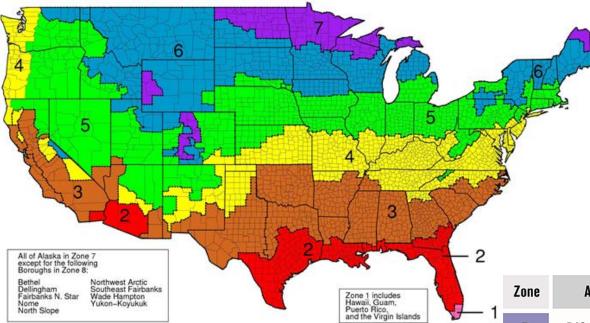
Material Properties & Thermal Energy Transfer



Heat is the flow of energy from a high temperature location to a low temperature location.

Source: http://www.physicsclassroom.com/class/thermalP/Lesson-1/What-is-Heat

Initially



Rates of Heat
Transfer are Affected
By:
Temperature
Difference

- Material Properties
 - Thermal Conductivity
 - Reflectivity
 - Thickness

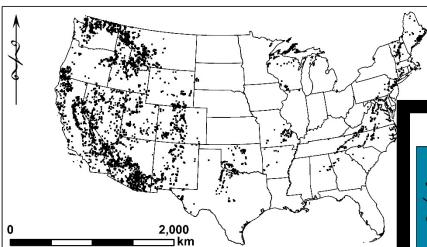
What is *your* climate zone & recommended R-value?

Image sources:

https://www.energystar.gov/ia/home_improvement/home_sealing/images/insulation_map.jpg and http://www.lowes.com/projects/images/buying-guides/Building-Supplies/insulation-bg-rvalues.jpg

4	Zone	Attic	2x4 Walks	2x6 _{Walls}	Floors	Crawlspaces
1	7	R49 to R60	R13 to R15	R19 to R21	R25 - R30	R25 to R30
	6	R49 to R60	R13 to R15	R19 to R21	R25 - R30	R25 to R30
	5	R49 to R60	R13 to R15	R19 to R21	R25 - R30	R25 to R30
	4	R38 to R60	R13 to R15	R19 to R21	R25 - R30	R25 to R30
	3	R30 to R60	R13 to R15	R19 to R21	R25	R19 to R25
	2	R30 to R60	R13 to R15	R19 to R21	R13	R13 to R19
	1	R30 to R49	R13 to R15	R19 to R21	R13	R13

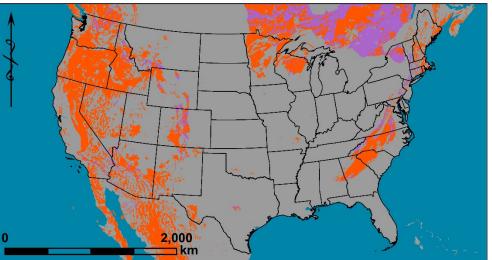
Material R-Value Per Inch

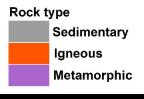

Material	R / inch	R-Values Loose Fill	11	13	19	22	30
Vermiculite	3.1 - 3.7	Fiberglass Rock Wood Cellulose Vermiculite Batts/Blankets —	3.5**	4.0"	6.0**	6.0**	13.0 ⁴⁴ 9.0 ⁴⁴ 8.5 ⁴⁴ 14.5 ⁴⁴
Glass Fiber Batts Rock Wool Batts	3.5	Fiberglass Rock Wool Riged Board —	3.5" 3.5"	4.0" 4.0"	7.0" 7.0"	7.0" 7.0"	6.5
Polystyrene	3.6 - 5.0 5.5 - 6.0	Polystyrene Urethane Fiberglass	3.0" 2.0" 3.0"	3.5" 2.0" 3.5"	3.5 ⁴⁴ 2.0 ⁴⁴ 3.5 ⁴⁴	5.5 ⁴⁴ 3.5 ⁴⁴ 5.5 ⁴⁴	7.5" 5.0" 7.5"

Information on this page is from APOGEE INTERACTIVE. INC. | apogee.net downloaded from http://c03.apogee.net/contentplayer/?coursetype=res&utilityid=gapower&id=2340

Uneven Distribution of Natural Resources

Copper Deposits in the United States

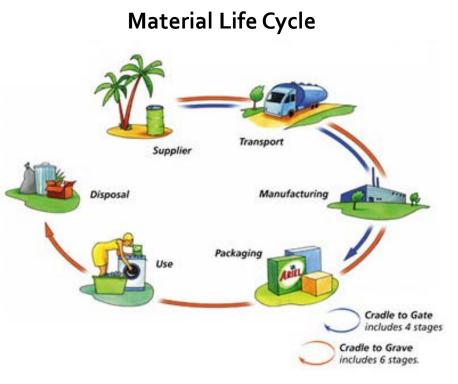

Data sources:


Copper Deposits: USGS Mineral Resources On-Line Spatial Data. Geographic information system shapefiles. [http://mrdata.usgs.gov/mrds/]

State boundaries: US Census Cartographic Boundary Shapefiles (1:500,000) 2014. [https://www.census.gov/geo/maps-data/data/cbf/cbf_state.html]

Prepared by Rudiger Escobar Wolf, Michigan Tech University, August 2015.

Major rock types in the United States


Data sources:

Rock types: Garrity, C.P., and Soller, D.R., 2009, Database of the Geologic Map of North America; adapted from the map by J.C. Reed, Jr. and others (2005): U.S. Geological Survey Data Series 424 [http://pubs.usgs.gov/ds/4241].

State boundaries: US Census Cartographic Boundary Shapefiles (1:500,000) 2014. [https://www.census.gov/geo/maps-data/data/cbf/cbf_state.html]

Prepared by Rudiger Escobar Wolf, Michigan Tech University, August 2015.

Life-Cycle Assessment

www.scienceinthebox.com.de

- Method of tracking, measuring environmental impacts
- Increasing importance in all industries
 - e.g., LEED, U.S. Green
 Building Council
- Reduce environmental impacts of current products / systems
- Improve design of new products / systems

Life-Cycle Assessment

All life-cycle stages can have impacts!

Standard Procedures

Defining System is Key!

List of Inputs, Outputs (build on prior data)

Impact Assessment (standard methods)

Interpretation 'hot spots' in life cycle? choose alternatives?

Final Decisions: Which is the 'best' wall insulation?

DECISION CRITERIA	Objective	Fiberglass		Cellulose		Foam Board		Rock Wool	
DECISION CRITERIA	Weight %	Rating	Score	Rating	Score	Rating	Score	Rating	Score
Material Properties									
Insulating Value									
Local Availability									
Renewability									
Chemicals & Additives Required									
Energy Consumed									
Recycled Content									
Air Pollution Emitted									
Total	100%								

Objective Weight% x Rating = Score

Mi-STAR: A model for integrated science reform

For further information visit the Mi-STAR website at http://mi-star.mtu.edu

THE HERBERT H. AND GRACE A. DOW FOUNDATION

